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We previously showed that injection of homogenous staphylococcal protein A-V antigen fusion peptide into
mice delayed allograft rejection and suppressed the major proinflammatory cytokines tumor necrosis factor
alpha (TNF-a) and gamma interferon (IFN-g) associated with generation of protective granulomas. This study
was undertaken to determine if V antigen could prevent endotoxic shock, known to be mediated by excessive
production of certain proinflammatory cytokines. After treatment with 50 mg of homogeneous V antigen-poly-
histidine fusion peptide (Vh), the 50% lethal dose of purified lipopolysaccharide (LPS) in BALB/c mice im-
mediately rose from 63 mg (normal controls) to 318 mg, fell to near baseline (71 mg) in 6 h, and then slowly
rose to a maximum of 566 mg at 48 h before again returning to normal. Injected Vh alone (50 mg) promptly
induced the anti-inflammatory cytokine interleukin-10 (IL-10) as well as modest levels of TNF-a (an inducer
of IL-10) in spleen. Concomitant injection of Vh and an otherwise lethal dose of LPS (200 mg) dramatically
decreased levels of TNF-a and IFN-g in the spleen and peritoneal lavage fluid as compared to values deter-
mined for LPS alone. These results would be expected if V antigen directly up-regulated IL-10 that is reported
to generally down-regulate proinflammatory cytokines. Mice receiving 200 mg of LPS 48 h after injection of Vh
exhibited patterns of cytokine synthesis similar to those observed in endotoxin-tolerant mice, a condition also
reported to be mediated by IL-10. These findings suggest that V antigen serves as a virulence factor by ampli-
fying IL-10, thereby repressing proinflammatory cytokines required for expression of cell-mediated immunity.

The low calcium response is defined as the ability of wild-
type yersiniae either to grow at 378C in the presence of Ca21

(;2.5 mM) while down-regulating LcrF-mediated virulence
factors or to remain static in Ca21-deficient media ($1.0 mM)
while up-regulating these determinants (18, 27, 30, 69) (Lcr1).
The latter include certain Yops (10, 23, 49–51, 56, 57) as well
as V and W antigens (12), all of which are encoded on a
;70-kb Lcr plasmid. V antigen (LcrV) was initially assumed to
be a major virulence factor (13, 15) due to its abundant pro-
duction at 378C but not 268C by all virulent strains (14, 15), its
export both in vitro (31) and in vivo (55), and its ability to raise
protective antibodies (14, 31). However, preparations used in
early studies consisted of crude (14) or partially purified sam-
ples (31) possibly containing other VirF-mediated determi-
nants capable of raising protective antibodies. Mutational loss
of V antigen, encoded by lcrV located within an lcrGVH-yopBD
operon (7, 44, 46), eliminated the low calcium response, indi-
cating an alternative role as internal regulator (7, 45, 54). This
interpretation seemed inconsistent with mediation of immunity
to plague by anti-V antigen because gamma globulin is typi-
cally excluded from bacterial cytoplasm. Attempts to verify the
putative protective role of anti-V antigen were hindered by the
penchant of this 37-kDa monomeric peptide to undergo auto-
degradation to 28- to 36-kDa fragments during purification by
classical biochemical methods (11). Nevertheless, rabbit poly-
clonal antisera raised against these fragments provided mice
with significant passive immunity against experimental plague
(61).

To obtain formal proof that this protection was mediated by
anti-V antigen, we engineered a staphylococcal protein, A-V
antigen fusion peptide (PAV). Rabbit polyclonal anti-PAV
provided marked passive immunity which was eliminated by
absorption with defined truncated derivatives of V antigen,
demonstrating that at least one protective epitope resided in-
ternally within the sequence of amino acids 168 to 275 (39).
The intravenous 50% lethal dose of Lcr1 Yersinia pestis in mice
is ;10 organisms (60); PAV, the V antigen moiety of a gluta-
thione transferase-V antigen fusion peptide, and a hexahisti-
dine-V antigen fusion peptide (Vh) could actively immunize
mice against challenge with ;104 (42), ;106 (32), and ;107

(40) Lcr1 yersiniae, respectively. It is remarkable that mice
infected with Lcr1 cells of Y. pestis are unable to express
detectable levels of the major inflammatory cytokines gamma
interferon (IFN-g) and tumor necrosis factor alpha (TNF-a)
until the onset of morbidity (41). Prior to this symptom, which
signals spillage of bacteria into the vascular system (56, 60–62),
yersiniae proliferate extracellularly within necrotic foci located
primarily in the liver and spleen. These lesions increase pro-
gressively in size and eventually coalesce, resulting in eventual
loss of organ function and death (42, 62) unless the mice
initially receive anti-V antigen (42, 62) or are primed with
IFN-g plus TNF-a (41). Both regimens facilitate a typical vis-
ceral inflammatory response characterized by expression of
endogenous IFN-g and TNF-a, infiltration of mononuclear
phagocytes, and attendant formation of protective granulomas
(42, 62). Proof that cytokine suppression by Lcr1 yersiniae was
at least partially mediated by V antigen was obtained by show-
ing that injected PAV down-regulated IFN-g and TNF-a nor-
mally induced by Lcr2 or lcrV yersiniae (42), prolonged the
survival of these mutants in vivo (42), enabled Listeria mono-
cytogenes to cause acute disease (42), and significantly post-
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poned mouse skin allograft rejection (38) known to be medi-
ated by IFN-g and interleukin-2 (IL-2) (3, 17).
Vh tightly bound genetically linked LcrH (40), suggesting

that the latter may serve as a chaperone for V antigen. The
reported regulatory activity of V antigen may therefore reflect
effects caused by the necessary accumulation of free LcrH in
nonpolar lcrV mutants. Accordingly, the bulk of evidence now
available indicates that the initial assumption that V antigen is
a monofunctional virulence factor (13) was correct. The pur-
pose of this report is to show that Vh provides marked resis-
tance to BALB/c mice against the lethal effect of lipopolysac-
charide (LPS) known to be caused by excess induction of IL-1,
IFN-g, and TNF-a (1, 8, 20, 21, 64, 65, 70). We demonstrate
that this protection is associated with amplification of the anti-
inflammatory cytokine IL-10. The latter was reported to pre-
vent endotoxic death by virtue of its ability to down-regulate
itself plus the proinflammatory cytokines IL-1, IL-2, IL-6, IL-8,
IL-12, IFN-g, TNF-a, and granulocyte-macrophage colony-
stimulating factor (25, 28, 34, 37, 47).

MATERIALS AND METHODS

V antigen fusion peptides. Methods for preparing homogenous V antigen
fusion peptides have been described in detail. Briefly, PAV and protein A (PA)
were produced by cells of Escherichia coli BL21 (F2 ompT lon rB2 mB2) (No-
vagen, Madison, Wis.) transformed with pPAV13 (39) and pRIT5 (Pharmacia,
Uppsala, Sweden), respectively. After growth in fermentor vessels containing
Luria broth plus ampicillin (50 mg/ml), the cells were harvested and lysed. The
resulting extracts were then clarified by centrifugation and subjected to chroma-
tography on immunoglobulin G-Sepharose 6FF (Pharmacia) (39). Vh was simi-
larly produced by cells of E. coli BL21(DE3) (Novagen) transformed with
pVHB62 (40) in M9ZB medium plus ampicillin (50 mg/ml) upon induction with
IPTG (isopropyl-b-D-thiogalactopyranoside). After lysis and clarification, the
extract was chromatographed first with chelating Sepharose (Pharmacia)
charged with Ni21 and then with Ni-nitrilotriacetic acid agarose (Qiagen, Chats-
worth, Calif.) to yield Vh, which was immediately stored at 2208C (40).
The levels of contaminating LPS present in purified V antigen fusion peptides

were determined with a QCL-1000 Limulus amebocyte lysate kit (BioWhittaker,
Inc., Walkersville, Md.) as described in directions provided by the manufacturer.
All preparations used for experiments were essentially LPS-free (,1 ng/mg); the
50-mg dose of Vh used to protect mice against endotoxic death contained,33 pg
of LPS.
Mice. Female BALB/c mice (8 weeks of age, 19 to 21 g) purchased from

Charles River Laboratories (Wilmington, Mass.) were used in all experiments.
The mice were kept in a room maintained at a constant temperature of 18.58C
and relative humidity of 35%; commercial food and drinking water were pro-
vided ad libitum.
LPS. Commercially available LPS prepared from Salmonella typhimurium by

the hot phenol method (33) was used in all experiments (Sigma Chemical Co., St.
Louis, Mo.). The 50% lethal dose of LPS was calculated by the method of Reed
and Muench (48) with at least five dilutions of LPS per determination and five
mice per dilution. The weight of each mouse was ascertained before injection to
ensure administration of a constant dose per kilogram of body weight.
Cytokine assays.Methods for preparing samples for analysis of cytokines have

been described previously in detail (41). This procedure involves sacrificing mice
in groups of three at intervals by terminal bleeding under anesthesia before
preparation of peritoneal lavage fluid (PLF) and removal of the spleen. PLF was
obtained by extraction of the peritoneum with 2 ml of 1% (wt/vol) 3-[(3-chol-
amidopropyl)-dimethyl-ammonio]-1-propanesulfonate (CHAPS; Sigma) in
Hanks balanced salt solution (GIBCO BRL, Gaithersburg, Md.) (70). Individual
samples of blood were allowed to clot overnight at 48C; sera obtained after
centrifugation were used in assays. Spleens were homogenized in Hanks bal-
anced salt solution plus 1% CHAPS, and the resulting preparations were clari-
fied by centrifugation. All samples were stored at 2708C prior to assay.
Commercial solid-phase enzyme immunoassay kits utilizing the multiple-anti-

body sandwich principle were used to determine IL-2, IL-4, IL-6, IFN-g, and
TNF-a (Endogen, Cambridge, Mass.) levels; IL-10 was assayed with a kit pur-
chased from Biosource International (Camarillo, Calif.). Results were expressed
as nanograms of cytokine per milligram of spleen, milliliter of PLF, or milliliter
of blood.
Miscellaneous. Phosphate-buffered saline (PBS) was used as a negative con-

trol in studies of LPS tolerance. Low-endotoxin (,1 ng/mg) bovine serum albu-
min (BSA; Sigma), PA, PAV, LPS, and Vh either dissolved or appropriately
diluted in PBS were also used in these experiments.

RESULTS

Resistance to LPS. BALB/c mice received 50 mg of homog-
enous Vh by intraperitoneal injection and were then chal-
lenged at intervals thereafter with appropriate concentrations
of LPS to permit determination of 50% lethal doses. As shown
in Fig. 1A, the 50% lethal dose rose immediately from 63 mg
(determined for the same lot of LPS in control mice treated
with PBS alone) to 318 mg before falling to near-baseline (71
mg) in 6 h. This value then increased gradually to achieve a
maximum of 566 mg by 48 h before again returning to normal.
The ability of Vh to increase the 50% lethal dose of LPS was a
function of concentration in that maximum resistance occurred
in mice receiving $12.5 mg although significant protection was
obtained with 6.3 but not 3.2 mg (Fig. 1B). A single injection of
Vh thus provided dose-dependent immediate resistance to LPS
that rapidly subsided only to be replaced by 48 h with a second
phase of delayed resistance. Vh (50 mg) boiled for 1 min did
not protect against endotoxic death.
Immediate resistance. Mice received Vh (50 mg) alone, a

lethal dose (200 mg or three 50% lethal doses) of LPS alone, or
both reagents by concomitant intraperitoneal injection and
were then sacrificed immediately or after 1.5, 3, 6, or 10 h; the
spleen, PLF, and blood were prepared for determination of
IL-2, IL-4, IL-6, IL-10, IFN-g, and TNF-a levels. Patterns of
expression in the spleen indicated that immediate resistance to

FIG. 1. (A) Fifty percent lethal dose of LPS injected intraperitoneally into
BALB/c mice at indicated intervals after intraperitoneal injection of 50 mg of Vh
in PBS; the dashed line indicates the base value of 63.1 mg of LPS determined for
control mice receiving PBS alone. (B) Percent of maximum protection against
lethality of LPS in BALB/c mice determined 48 h after intraperitoneal injection
of increasing doses of Vh; the maximum observed 50% lethal dose and base
control values are set at 100 and 0%, respectively.
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LPS was associated with prompt amplification of the anti-
inflammatory cytokines IL-4 (Fig. 2B) and especially IL-10
(Fig. 2D), which underwent an ;2.5-fold increase to achieve a
titer approaching 25 ng/g. Vh alone did not up-regulate the
important proinflammatory cytokine IFN-g (Fig. 2E), although
significant early synthesis of IL-2 (Fig. 2A) and especially
TNF-a (Fig. 2F) was noted. However, titers of IFN-g and
TNF-a were markedly reduced in spleens of mice receiving
LPS plus Vh as compared to those receiving LPS alone. We
assume that this difference accounts for survival. Levels of all
tested cytokines generated in the PLF of mice receiving the

lethal dose of LPS were initially higher than those observed
after injection of Vh alone or of LPS plus Vh (Fig. 3). Transient
appearance of TNF-a in blood after injection of LPS was
reduced by concomitant administration of Vh (Fig. 4E),
whereas both reagents together enhanced the initial titer of
IL-10 over those seen after injection of either Vh or LPS alone
(Fig. 4C). Injected Vh also prevented significant LPS-induced
accumulation of IFN-g in blood (Fig. 4D). These results illus-
trate that early resistance to the lethal effect of LPS mediated
by Vh is correlated with modest up-regulation of IL-4, marked

FIG. 2. Concentrations of IL-2 (A), IL-4 (B), IL-6 (C), IL-10 (D), IFN-g (E),
and TNF-a (F) in spleens of mice receiving an intraperitoneal injection of 50 mg
of Vh in 0.1 ml of PBS (E), 200 mg of LPS in 0.1 ml of PBS (F), or 50 mg of Vh
plus 200 mg of LPS (å).

FIG. 3. Concentrations of IL-2 (A), IL-4 (B), IL-6 (C), IL-10 (D), IFN-g (E),
and TNF-a (F) in the PLF of mice receiving an intraperitoneal injection of 50 mg
of Vh in 0.1 ml of PBS (E), 200 mg of LPS in 0.1 ml of PBS (F), or 50 mg of Vh
plus 200 mg of LPS (å).
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up-regulation of IL-10, and general down-regulation of the
major proinflammatory cytokines IFN-g and TNF-a.
Delayed resistance.Mice primed by intraperitoneal injection

of PBS, BSA (100 mg), LPS (5 or 25 mg), PA (100 mg), PAV
(100 mg), or Vh (50 mg) were challenged 48 h later by intra-
peritoneal injection of the normally lethal dose of LPS. Prim-
ing with LPS, PAV, and Vh, but not PBS, BSA, or PA, pro-
vided significant resistance against this challenge (Table 1). In
the case of Vh, protection was dependent upon the use of
once-thawed reagent; repeated freezing and thawing resulted
in loss of protective activity (Table 1). These experiments pro-
vided a basis for comparing Vh and LPS as primers affecting
expression of cytokines during delayed resistance.
Mice were treated as described (Table 1) with PBS, BSA,

LPS, PA, PAV, or Vh and then challenged after 48 h with the
normally lethal dose of LPS. Levels of cytokines were then
determined after 0, 1.5, 3, 6, and 10 h by the same procedures
used to characterize immediate resistance. Results observed
after initial injection of PBS and PA closely approximated

those illustrated for BSA (Fig. 5 to 7), and concentrations
determined upon priming with the 5-mg dose of LPS (Fig. 5 to
7) approached but never exceeded values found after priming
with the 25-mg dose (data not shown). Titers assayed in the
spleen after treatment with BSA, the 5-mg dose of LPS, and Vh
are illustrated in Fig. 5. Levels of cytokines recorded for con-
trol mice initially primed with BSA (destined to succumb to
endotoxemia in 2 to 3 days) generally exceeded those detected
after initial priming with Vh or the sublethal dose of LPS. This
effect was especially evident at 6 h for IFN-g (Fig. 5E) and
TNF-a (Fig. 5F). Values obtained for PLF are shown in Fig. 6.
Again, priming with Vh or a first round of LPS markedly
suppressed the appearance of all six cytokines upon injection
of the second round of LPS. This trend was less evident in
blood (Fig. 7), where only transient accumulation of TNF-a
occurred 1.5 h after challenge with LPS. These findings show
that initial treatment of mice with a sublethal dose of LPS
(sufficient to promote endotoxin tolerance) or with Vh yields
remarkably similar patterns of cytokine expression upon later
challenge with an otherwise lethal concentration of LPS. De-
layed Vh-mediated resistance to lethality may thus reflect in-
duction of a physiological state mimicking LPS tolerance, a
phenomenon also known to be mediated by IL-10 (25, 28, 34,
37, 47, 66, 67).

DISCUSSION

It is established that those proinflammatory cytokines that
serve as primary effectors of bacterial resistance by directly or
indirectly promoting inflammation and delayed hypersensitiv-
ity are primarily produced by either TH1 cells (e.g., IL-2,
IFN-g, and TNF-b) or professional phagocytes, especially
macrophages (e.g., IL-1, IL-6, IL-8, IL-12, and TNF-a). In
contrast, those major anti-inflammatory cytokines that typi-
cally favor humoral immune responses are primarily expressed
by TH2 cells (e.g., IL-4 and IL-10). Transforming growth factor
b can exhibit both capabilities (19). The cytokines produced by
each TH cell subset can often down-regulate those produced by
the other subset, thus effectively providing mechanisms which
maintain homeostasis (6, 29). Salient examples are up-regula-
tion of IL-10 by TNF-a (63, 68) and general down-regulation
of proinflammatory cytokines by IL-4 and, especially, IL-10 (5,
6, 25, 29, 34, 37, 59, 66, 67). The latter processes are typically
distinct as judged by the abilities of IL-4 to enhance degrada-
tion of proinflammatory cytokine mRNA and of IL-10 to pre-

FIG. 4. Concentrations of IL-2 (A), IL-6 (B), IL-10 (C), IFN-g (D), and
TNF-a (E) in blood of mice receiving an intraperitoneal injection of 50 mg of Vh
in 0.1 ml of PBS (E), 200 mg of LPS in 0.1 ml of PBS (F), or 50 mg of Vh plus
200 mg of LPS (å).

TABLE 1. Ability of Vh, PAV, and sublethal doses of LPS
to protect BALB/c mice against subsequent

lethal challenge with LPS

Compound
injected

Amt
(mg)

No. of
thawings

No. of survivors after challenge with
200 mg of LPSa at day:

0 1 2 3 4 5 6 7

PBS 8 4 0 0 0 0 0 0
BSA 100 8 3 0 0 0 0 0 0
LPS 25 8 8 8 8 8 8 8 8
LPS 5 8 8 8 8 8 8 7 7
PA 100 8 5 2 2 2 2 1 1
PAV 100 8 8 8 7 7 6 6 6
Vh 50 1 8 8 8 8 8 8 8 8

50 2 4 2 2 2 2 2 2 2
50 3 4 3 0 0 0 0 0 0

a LPS was injected intraperitoneally 48 h after administration of PBS, BSA,
LPS, PA, PAV, or Vh at the indicated doses.
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vent release of free NF-kB, which is known to favor transcrip-
tion of proinflammatory cytokine mRNA (4, 5, 37, 66, 67).
The results of the present study are in accord with the

generally accepted precept that marrow and visceral organs
such as the spleen serve as primary sources of both anti- and
proinflammatory cytokines. Consequently, cytokines in adja-
cent compartments such as the PLF and blood may reflect
spillover from primary compartments and thus exhibit marked
decreases in concentration. This variable as well as potential
differences in half-life tend to focus attention on primary

sources of cytokine synthesis as indicators of changes mediated
by regulatory agents such as Vh. It is important, however, to
determine the kinetics of cytokine expression in secondary
pools to define the steady state and appreciate possible sec-
ondary regulatory effects (e.g., putative up-regulation of IL-10
at distal sites by TNF-a in blood). Another concern in evalu-
ating data from whole animals is interpreting the significance
of determinations where injection of one reagent promotes
up-regulation whereas concomitant injection of another does
not (e.g., amplification of IL-10 by Vh but not by Vh plus LPS).

FIG. 5. Concentrations of IL-2 (A), IL-4 (B), IL-6 (C), IL-10 (D), IFN-g (E),
and TNF-a (F) in spleens of mice receiving an initial intraperitoneal injection of
100 mg of BSA in 0.1 ml of PBS (E), 5 mg of LPS in 0.1 ml of PBS (F), or 50 mg
of Vh in 0.1 ml of PBS (å) followed in 48 h by an intraperitoneal injection of 200
mg of LPS in 0.1 ml of PBS (at which time the determination was initiated).

FIG. 6. Concentrations of IL-2 (A), IL-4 (B), IL-6 (C), IL-10 (D), IFN-g (E),
and TNF-a (F) in the PLF of mice receiving an initial intraperitoneal injection
of 100 mg of BSA in 0.1 ml of PBS (E), 5 mg of LPS in 0.1 ml of PBS (F), or 50
mg of Vh in 0.1 ml of PBS (å) followed in 48 h by an intraperitoneal injection of
200 mg of LPS in 0.1 ml of PBS (at which time the determination was initiated).
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As already noted, IL-10 protects against the lethal effect of
LPS by down-regulating those proinflammatory cytokines, pri-
marily IL-1, IFN-g, and TNF-a, which account for endotoxic
death. Two lines of evidence presented in this report indicate
that Vh provides protection against the lethal effect of LPS by
amplifying IL-10 (and possibly IL-4). First, a single intraperi-
toneal injection of 50 mg of Vh provided immediate up-regu-
lation of IL-10 (and some IL-4) in the spleen as well as modest
synthesis of IL-2 and TNF-a (but not IL-6 or IFN-g). A dif-
ferent pattern was observed after lethal intraperitoneal injec-
tion of LPS (200 mg), which failed to up-regulate IL-10 in the
spleen but promoted immediate synthesis of IL-2, IL-6, and
TNF-a plus marked but delayed expression of IFN-g. The
significant titer of the latter (;500 ng/g by 6 h) undoubtedly
contributed to endotoxic death. Of interest was the observation
that the nonlethal combination of Vh (50 mg) and LPS (200 mg)
inhibited early expression of IL-2, IL-4, and IL-6 in the spleen
and prevented significant net synthesis of IFN-g and TNF-a.

This combination, however, did not significantly up-regulate
IL-10, suggesting that the latter may have been consumed. All
tested cytokines except TNF-a were rapidly expressed in the
PLF of mice receiving LPS alone, whereas concomitant injec-
tion of Vh markedly inhibited the initial concentrations of
these cytokines as well as TNF-a. This pattern was maintained
for IFN-g and TNF-a in blood. It is of interest that the ability
of Vh to so modify the kinetics of cytokine synthesis following
treatment with LPS closely resembles that reported for the
anti-inflammatory drug chlorpromazine (24, 36, 58), which, at
least in part, functions by interaction with dopamine receptors
(58).
A second line of evidence indicating that Vh induces IL-10 is

its ability to generate a delayed phase of resistance to LPS,
which peaked at 48 h. This phenomenon mimicked endotoxin
tolerance in that primary induction of sublethal levels of pro-
inflammatory cytokines occurred which probably induced sub-
sequent generation of IL-10. As already noted, TNF-a can
up-regulate IL-10, and marked levels of the former were im-
mediately expressed upon initial injection of both LPS and Vh.
It is probably significant in this context that patterns of cyto-
kine synthesis observed in mice first receiving Vh and then an
otherwise lethal dose of LPS and in those receiving both a first
and second round of LPS were remarkably similar, especially
in PLF. This resemblance was not due to LPS contamination of
Vh, as shown by the absence of detectable LPS in Vh, the
ability of Vh (but not LPS) to immediately induce significant
IL-10, and the observation that boiling or repeated thawing of
Vh destroyed anti-inflammatory activity.
The results presented here are consistent with a primary role

of Vh as inducer of IL-10 by two distinct mechanisms. These
consist of an immediate but unknown process of up-regulation
possibly shared by chlorpromazine and by a second delayed
procedure probably analogous to endotoxin tolerance. The
possibility also exists that IL-4 also undergoes primary ampli-
fication by injected Vh; further work will be required to define
the extent of the contributions made by these two anti-inflam-
matory cytokines. Following our discovery that mice infected
with Lcr1 yersiniae fail to express IFN-g or TNF-a (41), others
reported that these organisms can also down-regulate the
proinflammatory cytokines IL-8 (52) and IL-12 (9). Since ex-
pression of these cytokines is also inhibited by IL-10 (37), the
possibility that V antigen also mediates their suppression ex-
ists. This mechanism is not, of course, limited to Lcr1

yersiniae: a variety of other infectious species amplify IL-10 to
down-regulate proinflammatory cytokines and thereby survive
in vivo (16, 22, 26, 35, 43, 53).
Anderson et al. (2) noted that the mechanism whereby an-

ti-V antigen protects against plague is unknown. This assess-
ment is incorrect: as noted above, anti-PAV restored the ability
of mice to express IFN-g and TNF-a, thereby permitting con-
tainment of the organisms within protective granulomas. The
results of this study suggest that neutralization of V antigen by
a specific antibody prevents up-regulation of IL-4 and, espe-
cially, IL-10, thereby enabling the host to express a normal
component of proinflammatory cytokines. An explanation ac-
counting for the molecular basis of IL-10 amplification is, of
course, beyond the scope of the present manuscript. However,
it is predictable from the results presented above that anti-IL-
10, like concomitant injection of IFN-g and TNF-a (41), will
protect mice against experimental plague (but prevent Vh from
blocking endotoxic shock).
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